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Abstract 
 
This work is a preliminary study on the use of the extended Kalman filter (EKF) for the state estimation of multi-

body systems. The observers based on the EKF are described by first-order differential equations, with independent, 
non-constrained coordinates. Therefore, it should be investigated how to formulate the equations of motion of the mul-
tibody systems so that efficient, robust and accurate observers can be derived, which can serve to develop advanced 
real-time applications. In the paper, two options are considered: a state-space reduction method and the penalty method. 
Both methods are tested on a four-bar mechanism with a linear spring-damper. The results enable us to analyze the pros 
and cons of each method and provide clues for future research. 
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1. Introduction 

The extended Kalman Filter (EKF) has been wide-
ly used in combination with nonlinear dynamic mod-
els of systems as state observer in several fields.  

In current practice, the EKF is combined with sim-
plified dynamic models of the systems and elemen-
tary numerical integration schemes in order to stream-
line convergence and to achieve real-time perform-
ance of the computation process. 

However, current state-of-the-art knowledge in 
multibody dynamics opens the possibility of consider-
ing complex multibody models in real-time state ob-
server applications, as long as specialized schemes 
are employed [1]. The advantage is that more infor-
mation can be extracted from the model. 

The EKF is typically formulated for first order non-
linear systems and non-constrained coordinates, in 

state-space form (ordinary differential equations, 
ODE). However, the equations of motion of a multi-
body system are second order equations of con-
strained coordinates (differential algebraic equations, 
DAE). 

In the applications reported in the literature, the 
combination of the EKF with constrained DAE plants 
is usually addressed from the EKF point of view. That 
means adapting the KF rationale to the specific DAE 
problem. For example, in [2] it is shown that the de-
scriptor dynamics give rise to singular measurement 
noise covariance, and an extended maximum-like-
lihood method is applied. This same idea is followed 
in [3], where the constraint (unit quaternion norm) is 
treated as a pseudo-measurement. In [4], the error 
from constraint linearization is treated in a separate 
step, after the EKF, increasing the computational 
complexity. 

In this work, the solution to the combination of 
EKF and DAE is approached from the DAE point of 
view. As any observer runs in real-time a copy of the 
plant, the same techniques that are useful for model-
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ing and fast simulation of complex multibody systems, 
will also be useful for implementing observers for 
such systems. In particular, this work reports the EKF 
formal derivation in the case of a state-space reduc-
tion method and in the case of the penalty method. 

Although the final objective of the project is to ad-
dress complex multibody systems in industrial appli-
cations, in this first preliminary work a simple exam-
ple is considered for clarity. This test example is a 
four-bar mechanism with a spring-damper element, so 
that conclusions based on this simple system can later 
serve to address larger and more complex systems. 

Two computational versions of the mechanism are 
created: the first one represents the real “prototype”, 
while the second one plays the role of the “model”. 
To test the observer, the model is not an exact replica 
of the prototype, but differs in some physical parame-
ters; also, the readings coming from sensors and ac-
tuators may be altered when passed to the model. The 
objective is that the model follows the motion of the 
prototype with the help of an EKF. Preliminary nu-
merical results and practical discussions are presented 
at the end of the paper.  
 

2. EKF observer 

Consider a nonlinear system (plant) given by: 
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where x is the (unknown) state vector, and y is the 
known measurements vector. The functions f and h 
are also known, and the equations are affected by 
state and measurement noises δ, ε, with zero mean 
and given covariances Θ, Ξ, respectively. Then, the 
EKF is given by [5]: 
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being the matrices A, C, computed as the Jacobians 
of f and h with respect to the states, and evaluated at 
the estimated trajectory. The EKF locally minimizes 
the covariance P of the state-estimation error. 
 
3. Multibody dynamics 

In its most basic form, the dynamics of a multibody 

system is described by the constrained Lagrangian 
equations: 
 

T+ =

=
qMq Φ λ Q

Φ 0

&&
 (3) 

 
where M is the positive semidefinite mass matrix, q&&  
the accelerations vector, Φ the constraints vector, 

qΦ  the Jacobian matrix of the constraints, λ the 
Lagrange multipliers vector, and Q the applied forces 
vector. 

To adopt the form of the Eqs. (1) required for ap-
plication of the EKF, the second order system of Eqs. 
(3) can be written as a first order one, just by doing 

{ }T T T=x q v  with =v q& , 
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or, more compactly, 
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with the positions and velocities subject to the con-
straints at position and velocity level, 

 
   ;   = =qΦ 0 Φ v 0  (6) 

 
If dn  is the number of dependent variables and 

in  is the number of degrees of freedom (independent 
variables) of the multibody system, the size of the 
problem is 2 dn  (since the states are positions plus 
velocities). 

However, to match (5) to (1), there are several 
problems. On the one hand, the Lagrange multipliers 
are unknowns, and the mass matrix is not always 
invertible. On the other hand, the formalism (1) does 
not consider constraints among the states. 

In our approach, two formulations that convert the 
DAE (3) into an ODE have been used: a state-space 
reduction method known as matrix-R method [6] and 
the penalty method. The derivation of EKF observers 
for multibody systems based on the two mentioned 
methods is reported in the two following sections. 
 
4. Matrix-R formulation 

The main idea in this method [6] is to obtain an 
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ODE with dimension in  equal to the actual number 
of degrees of freedom, by using a set z of independent 
coordinates. The starting point is to establish the fol-
lowing relation between velocities: 
 

=q Rz& &  (7) 
 
where q are all the dn  dependent variables and z is a 
set of in  independent variables. Such a relation can 
always be found, for instance, by taking the derivative 
of the restrictions, =qΦ q 0& , and splitting all the 
velocities in two subsets, so that one subset of veloci-
ties may be written as a function of the other subset. 
Once (7) is obtained, it follows that 
 

= +q Rz Rz&&& && &  (8) 
 

Going back to (3), premultiplying by the transpose 
of R, and having in mind that =qΦ R 0 , 
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which defines the corrected mass matrix M  and the 
corrected vector of generalized forces Q . The result 
is that the DAE (3) in the dependent variables has 
been converted into the ODE (9) expressed in inde-
pendent variables. 

The main advantage of the matrix-R method is the 
reduction of the number of equations, at the expense 
of having to compute, at each instant, R and the de-
pendent states as functions of the independent ones. It 
also requires the effort of managing the redundancy in 
restrictions and the changes in the representative set 
of velocities. 

If now the states are defined as { }T T T=x z w , 
with =w z& , the following equations can be written, 
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or, more compactly, 
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These equations perfectly match (1) and, therefore, 

the EKF in (2) can be straightforwardly applied. In 
particular, the state-space matrix is obtained as the 
linearization: 
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which can be approximated as, 
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where K is the stiffness matrix and C the damping 
matrix. 

In this case, the size of the problem is 2 in . Now, 
according to (2), the correction provided by the EKF 
must be included into the observer equations, 
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where 1K  and 2K  are the upper and lower parts of 
the Kalman gain matrix K, and sy  are the outputs 
provided by the sensors. 

Since real-time performance of the algorithms will 
be required by the final applications, the integration 
procedure is relevant in order to make the algorithm 
as efficient as possible. The implicit single-step trape-
zoidal rule has been selected as integrator, 
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Now, (15) can be substituted into (14), thus leading 

to the nonlinear system of equations in the states, 
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This system can be iteratively solved by the New-

ton-Raphson iteration, the approximated tangent ma-
trix being, 
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where 1C  and 2C  are the upper and lower parts of 
the output Jacobian matrix C. 
 
5. Penalty formulation 

The basic idea in the penalty method is to postulate 
that the constraining forces in (3) are proportional to 
the violation of the restrictions. In particular, the La-
grange multipliers are chosen in the form [6]: 

 
( )22α ζω ω= + +λ Φ Φ Φ&& &  (18) 

 
where α is the penalty factor, usually fixed to a very 
large value, 107 or more. Notice that the combination 
of the constraint functions and their derivatives takes 
the form of a second order oscillating system with 
damping coefficient and natural frequency usually 
chosen as ζ=1, ω=10. So, the rigid constraints in the 
DAE (3) can be converted into non-rigid constraints 
in an ODE: 
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However, due to the very large value of α, it can be 

shown that this is equivalent to representing the con-
straints by springs of large stiffness, dampers of large 
friction coefficient and masses of large inertia. In this 
way, the constraints can actually be violated, but only 
in a very small amount, enough for representing de 
DAE (3) as the ODE (19) with negligible approxima-
tion errors. 

Compared to the matrix-R method (9), the Eq. (19) 
has the drawback that the number of variables is lar-
ger: it is equal to the total number of dependent vari-
ables, dn . However, this method has the advantage 
that (19) can be directly integrated as an ODE and it 
is not necessary to solve at each time instant the prob-
lems of passing from independent to dependent states 
and related problems mentioned in the previous sec-
tion. Furthermore, the corrected mass matrix (the 
inverted matrix in (19)) is invertible, even if M is 
only positive semidefinite. 
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or, more compactly, 
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Then, the EKF in (2) can be straightforwardly ap-

plied. In particular, the state-space matrix is obtained 
as the linearization: 
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which can be approximated as, 
 

( )
( )

1 T T

1 T

2

2

ω α α

α ζω

−

−

⎡ ⎤= ⎢ ⎥
⎣ ⎦

= − + +

⎡ ⎤= − + +⎣ ⎦

21 22

2
21 q q q qq

22 q q q

0 I

M K Φ Φ Φ Φ v

M C Φ Φ Φ

A
A A

A

A

&

&

 (23) 

 
In this case, the size of the problem is 2 dn . As the 

size of the problem increases, it affects particularly 
the covariance matrix P (see (2)), with a number of 
entries proportional to the square of the size. 

Now, according to (2), the correction provided by 
the EKF must be included into the observer equations, 
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where 1K  and 2K  are the upper and lower parts of 
the Kalman gain matrix K, and sy  are the outputs 
provided by the sensors. 

As for the previous formulation, the implicit single-
step trapezoidal rule has been selected as integrator, 
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Now, (25) can be substituted into (24), thus leading 
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to the nonlinear system of equations in the states, 
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This system can be iteratively solved by the New-

ton-Raphson iteration, the approximated tangent ma-
trix being, 
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where 1C  and 2C  are the upper and lower parts of 
the output Jacobian matrix C. 
 

6. Example 

The four-bar mechanism with a spring-damper 
element shown in Fig. 1 is chosen as example. Two 
computational versions of the mechanism are created: 
the first one represents the real “prototype”, while the 
second one plays the role of the “model”. A sensor in 
the prototype provides as a measurement y=s, the 
distance between point A and point 2, i.e., the ends of 
the spring-damper element. 

The state variables in this example are the Carte-
sian coordinates of points 1 and 2, and the distance s: 

 
{ }T

1 1 2 2x y x y s=q  (28) 
 

The independent variable z for the matrix-R me-
thod is the distance s. 

The mass matrix M, the force vector Q and the 
constraints Φ of the mechanism are obtained accord-
ing to [6]. 

 

 
 
Fig. 1. Four-bar mechanism with spring-damper element. 

The numerical values of the parameters are the 
masses 1Bm =2 kg, 2Bm =25 kg, 3Bm =2 kg; bar 
lengths 1BL =0.9 m, 2BL =1 m, 3BL =1.05 m; natural 
spring length 0s =1.4 m; fixed points Cartesian coor-
dinates A=(0,0), B=(0,−1); spring coefficient k=10000 
N/m, and damping coefficient c=500 Ns/m. 

Regarding the tuning of the EKF, the main parame-
ters are the matrices Θ, Ξ. In principle, they have to 
represent the covariances of the zero-mean noises 
δ, ε, in (1). However, in practice, this information is 
not always clearly known so that the matrices Θ, Ξ, 
are used as tuning parameters adjusted by trial-and-
error experimental work. 

It should be stressed that there is no perfect solution 
to the filtering problem, but rather there exist trade-
offs between competing objectives. Solutions that 
provide fast convergence are affected by higher levels 
of noise. If low levels of noise are desired, then the 
initial errors converge more slowly to zero. To facili-
tate the tuning, the matrices are postulated to be di-
agonal, Θ=diag( iθ ), Ξ=diag( iξ ). 

After some trial-and-error test work under the si-
mulation conditions to be detailed later, the EKF tun-
ing is set to Θ=diag(10), Ξ=diag(0.01). The initial 
covariance value has been chosen to be 
P(0)=diag(diag( ip ),diag( iv )), to represent different 
initial uncertainties in positions and velocities. As it is 
supposed that model and prototype start from rest 
conditions, the initial uncertainty is zero in velocities 
and, let us say, 0.1 in positions, so that P(0)=diag 
(diag(0.1), diag(0)). 

Regarding the simulation conditions, to show the 
recovery from different initial conditions, the real 
prototype starts at s(0)=1.80 m, while the observer 
starts at s(0)=1.85 m. To evaluate the effect of noise 
in measurements, it is supposed a sensor noise of 0.02 

 

 
 
Fig. 2. History of state 1x . 



 J. Cuadrado et al. / Journal of Mechanical Science and Technology 23 (2009) 894~900 899 
 

Table 1. CPU-TIMES (s). 
 

Method Matrix-R Penalty Penalty+ 

CPU-time (s) 0.11 0.09 0.18 
 
 

 
 
Fig. 3. History of state 1x  (position and velocity problems are 
now solved for the penalty method). 

 
m is uniformly distributed. Finally, to check the effect 
of uncertain exogenous forces, the prototype runs 
under normal gravity, g=9.81 m/s2, but the observer 
runs under g=8.81 m/s2. In these conditions, the his-
tory of the state 1x  (real vs. estimated through both 
matrix-R and penalty method) is plotted in Fig. 2. 

It can be seen in Fig. 2 that the observer based on 
the penalty method behaves worse than the one based 
on the matrix-R method. The reason is that, while the 
measured coordinate s is perfectly followed by the 
observer, the remaining coordinates 1x , 1y , 2x , 

2y , are not consistent with the distance s, since the 
penalty terms are not capable of ensuring the con-
straint satisfaction under the large forces introduced 
by the EKF. And this happens for any value of the 
penalty factor. 

The explanation to this phenomenon can be found 
by looking at the second equation in (24): an incre-
ment of the penalty factor increases the penalty forces 
which oppose to constraint violation but, at the same 
time, increases the value of the correction terms com-
ing from the EKF. Therefore, increasing the value of 
the penalty factor so as to guarantee constraint satis-
faction is worthless. 

Hence, to ensure constraint satisfaction, the kine-
matic position and velocity problems should be 
solved at each function evaluation for the penalty 
method. Fig. 3 shows that the obtained results in that 
case are as good as those provided by the matrix-R 
method, at the cost of losing the advantages of the 

penalty method pointed out in Section 5. 
Regarding the efficiency, the CPU-times required 

for both methods to run the described 1 s simulation 
under Matlab environment are gathered in Table 1. 
The fixed time-step used for the numerical integration 
is, in all cases, ∆t=0.01 s. The method “Penalty+” in 
Table 1 refers to the penalty method when the posi-
tion and velocity problems are solved (Fig. 3). 

Therefore, it is clear that the matrix-R method is 
more efficient than the penalty method, due to the 
above mentioned need of solving the position and 
velocity problems in the penalty method in order to 
ensure constraint satisfaction. 
 

7. Conclusions 

This work presents a study on the application of 
EKF observers to multibody systems. Although the 
numerical tests have been carried out on a simple 
four-bar example, the final objective is to implement 
the observers on complex multibody systems for ad-
vanced real-time applications. 

The approach has been based on the idea that the 
same techniques that are suitable for fast simulation 
of multibody systems will be efficient as well for 
implementing the observers. Two methods have been 
chosen: the matrix-R formulation and the penalty 
formulation. The detailed development of the EKF 
observer for these two methods has been presented. 

The simulation tests show successful results. After 
a not very involved trial-and-error tuning, the EKF 
observers are robust with respect to sensor noise and 
errors in physical parameters, initial position and ac-
tuation readings. 

The matrix-R method has the advantage of leading 
to a lower problem size. The penalty method, whose 
corrected matrix is always invertible, was expected to 
have the advantage of neither requiring the computa-
tion of the dependent states as functions of the inde-
pendent ones, nor the effort of managing the redun-
dancy in constraints and the changes in the represen-
tative set of velocities. However, it was found that 
constraint satisfaction was not achieved by the pen-
alty terms and, therefore, the mentioned advantage 
was lost. Consequently, the matrix-R method showed 
to be more efficient. 
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